Density of periodic points, invariant measures and almost equicontinuous points of Cellular Automata

نویسنده

  • Pierre Tisseur
چکیده

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of such automata converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. Therefore we also show that for any shift ergodic and F -invariant measure μ, the existence of μ-almost equicontinuous points implies that the set of periodic points is dense in the topological support S(μ) of the invariant measure μ. Finally we give a non trivial example of a couple (μ-equicontinuous cellular automata F , shift ergodic and F -invariant measure μ) which has no equicontinuous point in S(μ).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cc sd - 0 00 89 10 0 , v er si on 1 - 1 0 A ug 2 00 6 Density of periodic points , invariant measures and almost equicontinuous points of Cellular Automata

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of a μ-almost equicontinuous cellular automata F , converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. ...

متن کامل

A ug 2 00 6 Density of periodic points , invariant measures and almost equicontinuous points of Cellular

Revisiting the notion of μ-almost equicontinuous cellular automata introduced by R. Gilman, we show that the sequence of image measures of a shift ergodic measure μ by iterations of a μ-almost equicontinuous cellular automata F , converges in Cesaro mean to an invariant measure μc. If the initial measure μ is a Bernouilli measure, we prove that the Cesaro mean limit measure μc is shift mixing. ...

متن کامل

Strictly Temporally Periodic Points in Cellular Automata

We study the set of strictly temporally periodic points in surjective cellular automata, i.e., the set of those configurations which are temporally periodic for a given automaton but are not spatially periodic. This set turns out to be residual for equicontinuous surjective cellular automata, dense for almost equicontinuous surjective cellular automata, while it is empty for the positively expa...

متن کامل

Density of the Periodic Points in the Interval Set

The dynamical system (f,R) is introduced and some of its properties are investigated. It is proven that there is an invariant set Λ on which the periodic points of f are dense.

متن کامل

Topological Dynamics of 2D Cellular Automata

Topological dynamics of cellular automata (CA), inherited from classical dynamical systems theory, has been essentially studied in dimension 1. This paper focuses on 2D CA and aims at showing that the situation is different and more complex. The main results are the existence of non sensitive CA without equicontinuous points, the nonrecursivity of sensitivity constants and the existence of CA h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006